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APPENDIX
Table 3. Cartesian forms for the real spherical harmonic functions with I = 8 (Paturle, 1990)
These extend the published tabulation for / < 7 (Paturle & Coppens, 1988). The arguments x, y and z are orthonormal components, i.e.

direction cosines, of a unit vector and the functions

Yim = Nl.|m| Cl.l.ml Crm (x)y’z)

are normalized such that

_ﬂy,,,,|d.(l= 2 - 80_[.
2

m Cam

0 643528 — 120122° + 6930z — 126022 + 35

1 (71527 — 10012° + 3852° — 352)x
-1 (7152 — 10012° + 3852 — 352)y

(14326 — 14324 + 332 - 1) (x* — )P

-2 (1432° — 1432° + 3322 — 1)(2xy)

3 (392° — 262° + 32)(x* — 3xp?)
-3 (392° - 262° + 32) 3x*y — y*)

4 (652 — 262 + 1)(x* — 6x32 + )
-4 (657 = 262 + 1)(4x°y — 4xy)

5 (522 = 2)(x* = 103y + 5xp%)
-5 (52 = 2)(5x%y — 10X + )

6 (152 = 1) (8 — 1554 + 1524 — %)
-6 (1522 = 1)(6x%y = 2063 + 6x7°)

7 2(x" = 21xX°y* + 35x3y* — Txy%)
-7 2(7x%y — 35x% + 21x%° — y')

8 XE — 28x5)7 + T0x*y* — 28x%)° + p°
-8 8x"y — 56x°y° + 56x%y° — 8xy’
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Abstract

The amplitudes of beams reflected from a crystal
surface by high-energy electrons are expressed in
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terms of matrix operators based on Bloch waves. The
solution is derived in terms of the limiting case of an
infinite slab and is therefore applicable to cases
involving overlayers of different composition and
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structure. The possibility of using a kinematical
theory and its relationship to the full dynamical
treatment are investigated. Calculations show that
the method is limited by numerical problems but that
it can be used to give a qualitative description of
features in reflection high-energy electron diffraction.

Introduction

Reflection high-energy electron diffraction (RHEED)
has become more important in recent years owing to
the use of RHEED oscillations in monitoring the
epitaxic growth of multilayer films (Neave, Dobson,
Joyce & Zhang, 1985). There has also been increas-
ing interest in using RHEED and reflection electron
microscopy (REM) for the characterization of sur-
face structure at the atomic level (Yagi, 1987). In
those cases where RHEED is used to monitor film
growth, a beam of energy between 10 and 30 kV is
incident at a glancing angle of a few degrees.
Generally, reflection electron microscopy is per-
formed in electron microscopes and higher beam
energies of 100 kV are used. The angle of incidence
on the specimen is correspondingly smaller. In many
respects, the theory of RHEED is similar to the
theory for transmission electron diffraction or
microscopy as exchange between the incident elec-
tron and the crystal electron can be neglected, unlike
in low-energy electron diffraction (LEED). The
boundary conditions are very different from the
transmission electron diffraction case.

Many experimental surface scientists who use
RHEED as a surface-characterization tool are quite
satisfied with an analysis based on kinematic (single-
scattering) theory (see, for example, Cohen, Petrich,
Pukite, Whaley & Arrott, 1989). It is well known
that electrons interact strongly with matter and
strictly RHEED should be described by a multiple-
scattering (dynamical) diffraction theory.

The first such theory of RHEED, based on Bloch
waves, was published by Bethe (1928). Similar two-
beam theories were developed by Kohra &
Shinohara (1948), and Colella (1972) extended these
ideas to the many-beam problem. An interesting
diagonalization method based on the Hills determi-
nant was proposed by Moon (1972). The Bloch-wave
methods all rely on a three-dimensional Fourier
analysis of the crystal potential. Peng (Peng &
Whelan, 1990) has recently shown how to express the
Bloch-wave theory in terms of matrix operators. He
then applied the theory for one-rod systematic dif-
fraction to the calculation of intensity of oscillations
during epitaxic growth (Peng & Whelan, 1991b,c,d).
Bloch-wave calculations have also been used to
explain the phenomenon of surface resonance both
numerically (Zuo & Liu, 1992) and analytically
(Dudarev & Whelan, 1994).

In the last decade, it has become more common,
following Maksym & Beeby (1981), to do a Fourier
analysis in a plane parallel to the crystal surface and
solve the coupled differential equations for propa-
gation along the direction of the surface normal.
Ichimiya (1983) has developed a variation of this
method that uses matrix operators to represent the
propagation through thin slabs. In these methods, it
is implicitly assumed that the solution has decayed
sufficiently so that a simple boundary condition can
be imposed on the bottom surface of a crystal slab.
However, there are still numerical problems as the
exponentially growing solutions increase faster than
the desired exponentially decaying solutions. Zhao,
Poon & Tong (1988) have re-expressed the solution
in terms of a logarithmic derivative that avoids many
of the numerical problems of the Maksym & Beeby
(1981) method. They argued that a large number of
reciprocal-lattice rods were needed in the calculation
for convergence. This was disputed by both Ichimiya
(1990), who showed that his method converged with
11 rods, and Meyer-Ehmsen (1989), who separated
the oscillatory behaviour from the reflection matrix
and achieved convergence with seven rods for
Pt(111). To achieve convergence for a wide range of
angles in a rocking curve at an arbitrary azimuth, it
is advisable to follow the prescription of Zhao, Poon
& Tong (1988).

Finally, there have been calculations based on the
transmission-microscopy multislice method (Peng &
Cowley, 1986), which follows the propagation of the
beam, as it travels through the crystal surface region.
In effect, these calculations are applications of the
standard transmission supercell method for crystal
defects, where the defect is the crystal-vacuum inter-
face. This would be called profile imaging in high-
resolution microscopy of a thin specimen, with the
beam incident on the surface plane. A disadvantage
of these methods is that there are always questions
on the magnitude of errors propagated and whether
the solution has reached a steady state. The com-
puter time is prohibitive for calculating rocking
curves but the methods are very useful for calcu-
lating defect images in which there is no periodicity
in the crystal surface plane.

If RHEED is to be applied routinely in determin-
ing surface structures, a simple quasikinematic inter-
pretation of rocking-curve intensity distributions
would be most useful. There has been much recent
work on the GaAs(100) (2 x4) reconstructed surface
(Ma, Lordi, Larsen & Eades, 1993) and Knibb
(1991) has made comparisons between dynamical
and kinematic theories. Peng & Whelan (19914a) have
suggested that it should be possible to treat the
surface superlattice reflections kinematically. Korte
& Meyer-Ehmsen (1993) have extended the calcula-
tion scheme used by Meyer-Ehmsen (1989) and con-
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sider first-order diffuse scattering while retaining
dynamical coupling between rods.

It is also necessary to have some method for
exploring perturbations of atom positions, Debye—
Waller factors or inelastic potentials in any attempt
to solve the inverse problem. Both Peng (Peng &
Whelan, 1992) and Stock & Meyer-Ehmsen (1990)
have used nonlinear search procedures to determine
best-fit parameters to describe the results of RHEED
experiments. Peng & Dudarev (1993) have used a
perturbation approach to calculate the changes of
the specular beam intensity in a one-rod calculation
for the Ni(001) p (2 x 2) surface when the top atom is
displaced by up to 0.2 A.

In this paper, a matrix form of RHEED theory is
developed, similar to the coupled plane-wave equa-
tions of high-energy electron diffraction (Hirsch,
Howie, Whelan, Nicholson & Pashley, 1965). The
reflected-wave amplitudes are derived by applying
the boundary conditions to a slab of thickness ¢ and
then allowing the thickness to tend to infinity. In this
way, the exponentially growing solutions are for-
mally eliminated. The various features of rocking
curves are discussed and explained using simple
quantum-mechanical models. Finally, the effect of
perturbations are examined and the formal connec-
tion to a kinematic theory demonstrated. The appli-
cability of various perturbations is also considered.

Theory

The behaviour of electrons at RHEED energies is
governed by the Schrédinger equation

SR AN
o (dx2+dy2+dzz +eVy=Ey )

E=®12m(x%+ x2+ x2), )

where x., x, and )y, are the components of the
incident electron wave vector in free space. The x
and y axes are in the surface plane and the z axis is
along the surface normal directed into the crystal.
Inside the crystal, the wave function is expanded as a
three-dimensional Fourier series in terms of the
reciprocal-lattice vectors,

() =3 pg(z) explilk, + g)x

+ik, + gy +ilk: + g2)z], 3

where k,, k, and k, are the components of the wave
vector in the crystal. Similarly, the potential is also
expanded as a Fourier series:

U(r) = 2me/i?)V(r) = 3 U exp (ig * 1)

@)

The continuity of the wave function and its deriva-
tive require that the x and y components of the

electron wave vector match at the surface. This is
true for all reciprocal-lattice rods labelled g,, g,

ke=xx kitg:=x:t8x
ky:Xy ky+gy=Xy+gy-

It is customary to include the mean inner potential in
the definition of the z component of the wave vector:

&)

K: = x2 + Ug. ©6)
The Schrédinger equation becomes
dqug . d¢’g 2
iz TUkt )=tk - (k. + )

- (kx + gx)2 - (ky + gy)2]€pg + % Ug—hq’h

=0, ™

which can be expressed more compactly in matrix
form as

Hager) (Lo Ja)lage) ©
dz\de/dz) \-Q -B/\de/dz)’ @®

Qg =k*— (k +g)°
Qu=U;—r g#h
B, =2i(k,+g,)
B, =0 g=h

If a transformation is made such that z' =iz, the
coupling matrix is purely real:

i ¢ _ 0 1 (%]
dz’(dga/dz)_(Q —B)(dqa/dz')' ®

The solutions to the coupled differential equations
can be found by diagonalizing the coupling matrix L
in terms of the eigenvectors C and the eigenvalues A.

b (—OQ —IB)

LC=CaA

where

(10)

o0\ [ #O
(d¢(z>/dz) = Clexp A1, C (d¢(0)/dz)' th

The coupling matrix, L, has dimensions 2N X 2N,
where N is the number of Fourier coefficients in the
expansion of the potential. The wavelength and its
derivative at a depth ¢ are now expressed in terms of
the wavefunction and derivative at the entrance
surface.

For the relevant boundary conditions to be
applied, the solution must be reformulated in terms
of the beams propagating in the vacuum outside the
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crystal with wave vector
Xx + Ex» Xy + gya I[XZ - (Xx + gx)z - (Xy + gy)Z]l/(zi2

corresponding to each of the » reciprocal-lattice
rods. The first point to note is that there are only 2n
nondegenerate eigenvalues in the first Brillouin zone.
These can be selected using a 2N X 2n matrix S of
the form

(13)

S O = O O
S = O O O
S o O o ©

It is also necessary to sum the amplitudes in the z
direction along the foil normal. This can be achieved
with a 2n X 2N matrix P of the form

1 exp(ig.,z) exp(igs;z) O
0 0 0 1
0 0 0 0

The equation relating the wavefunction summed over
the coefficients in a rod, @, and its derivative at
depth, ¢, to that at the specimen surface can now be
rewritten as

o) \ o
(d¢(t)/dz) =PCS[exp(An],STC™'P
@(0)
* (d¢(0)/dz)' (15)

The amplitudes of the beams in free space are den-

oted 9. and can be divided into forward and back-

ward propagating parts according to the sign of the z

component of the wave vector x= *[x* — (xx + £.)°

— (x, + g,)’1">. Matching wavefunctions at the exit

surface of the crystal gives

&(z) =n.exp(ix.z) + n-exp(—ix.2)
dd(z)/dz = ix,n. exp (ix.z) — ix.n- exp(—ix.2),

(16)

which can be expressed more conveniently in matrix

form:
L4 _ I I N+
o) (ar ) () 7

41

The forward- and backward-propagating wave
amplitudes can be expressed in terms of the Fourier-
coefficient amplitudes by inverting (17):

N+ _ 4
(n-) B F(d(b/dz)’ (18)
where F is defined by
F=} Tk (19)
N ’( 1 - I/ixz)'
Equation (15) becomes
7. _ - -
(7)—(!)) =FPCS [exp(AN)],STC'PTF!
7.(0)
. 2
g (n-(O)) o)

To simplify (20), the matrix product FPCS is

0 0 0
exp(ig2.z) 0 0 (14

0 1 €xp (lg 2:2 )

denoted A and its inverse V. The eigenvalues can be
separated into a set with positive real parts denoted A
and a corresponding set with negative real parts
denoted —A. The forward- and backward-propa-
gating waves can now be written as

(D) _ A A [exp(Ar) 0
7-() Ay Ay 0 exp(—Ar)

o Vi Vi2\ (9.0

Vi Vau/\n-0)
Following the procedure used by Fathers & Rez
(1979, 1984) in the solution of the electron-transport
equation in semi-infinite specimens, the solution for
the reflected wave at the surface, n_(0), can be
expressed in terms of the incident wave, ,(0). As
the thickness tends to infinity, the backward-

propagating wave n_(¢) tends to zero. The reflected
wave is given by

7-(0) = —[Az exp(An) V,,

@n

+ Apexp(— AN V] [Ayexp(An) Yy

+ Apexp(—A0) V1 19.(0). (22)
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Extraction of a factor A,,exp(Af)V,, from the matrix
operator that is being inverted leads to

7-(0)= —[I+ Vi'exp(—ANA5;' A
xexp(—Af) Vo] 'Vilexp(—AD Az

X[Az exp(Af) Vi,

+ Ay exp(—A1) V]9, (0). (23)
As ¢ tends to infinity, we are left with
7-(0)= —V5'Vi9.(0), 249
which can be rewritten as
7-(0) = A A'9.(0) (25)

by making use of the fact that V is the inverse of A.

This result is identical to that which would have
been obtained by excluding Bloch waves that corre-
spond to exponentially growing solutions. In terms
of Bloch-wave coefficients «;, the wave function in
the crystal can be written as

Y@= 2 T o,Crexpli(y; +k. +g.)z)

838y 82J

X exp [l(kx + gx)x + (ky + gy)y]’ (26)

where y; are the eigenvalues of the matrix L. In terms
of the amplitudes for the rods designated by g, ,, the
wave function outside the crystal is

g, (0) exp (ix,, 2) + 1z, (0) exp (—ix,, 2).
Application of the boundary condition leads to

> a;Cp=ng (0) + g (0)

8xJ

@7

(28a)

2 a;Co(y;+ k. +8) =X, m5,,00) — xg, 5., (0).
8l (285)

The reflected amplitudes can be solved as

7g,,(0) = { 2 Ch= 2 Cil(y+ k. + gz)/Xg,,.,]}
82J &)

X { LCt X C
8J 4]
-1

X[(y+ k. + gz)/Xg”]} 7¢.,(0).

The term in the first bracket can be identified with
A,; and the second term with A,

(29)

Overlayers

The reflected amplitudes for a system with a layer of
thickness ¢ on a semi-infinite bulk slab can be for-

mally derived from (20) and (21). Equation (25) or
(29) describes the scattering from the semi-infinite
bulk medium. For convenience, this is rewritten as

7-(0) = Rpn.. (1), (30)

where Rj is the reflection matrix of the bulk. Equa-
tion (20) or (21) applies for scattering by the thin
overlayer. Equation (21) is expressed as

(n+(l‘)) _ (Tu(t) le(f)) (1)+(0)) 31)
7-(2) Tu() Tx()/ \n-(0)/°
where the matrices T;;(f) can be calculated from 4,

V; and exp(Af). The expression for the reflected
amplitudes from the layer and bulk slab is

7-(0) = [T2(2) + T2x()Rg]

X [Ty1() + Ti2())Rg] ' (0). (32)

Again, in accord with Fathers & Rez (1979, 1984),
the T,;(Y) matrices could all be calculated using
decaying exponentials, though this should not be
necessary for RHEED problems involving layers
with a thickness of only a few atomic planes. For a
thin layer, the Fourier-series expansion of (3) and (4)
should be replaced by a Fourier transform by
making g, a continus variable. Using the Fourier-
series representation is equivalent to doing a Fourier
integral by summing over the values of the potential
sampled at discrete reciprocal-lattice vectors.
Approximating an atom as a Gaussian of half-width
0.5A gives a maximum fractional error in the
potential of 20%. The error would be most serious at
glancing angles where the details of the potential
have the greatest effect.

Perturbation theory

To examine the relationship between the full dy-
namical theory and a kinematic theory, it is useful to
develop a perturbation theory for the reflected-beam
amplitudes. It is convenient to assume that there is
only one Fourier coefficient of potential for each
rod, and that those Fourier coefficients of potential
U,_, representing coupling between rods can be
considered small compared with Uy, The matrix Q
m (8) is now diagonal and for each rod a
Schrédinger equation such as (41) in the Appendix
applies, with complex wave vector A given by a +
iB. The off-diagonal parts of the original matrix M,
given in (8), can be considered as a perturbing
matrix, U.

The eigenvector matrix for the unperturbed case is

I I
C= .
(iA -—iA)

Standard perturbation theory gives the perturbed

(33)
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eigenvector matrix as C(I + B),

Ugh —Ugh
A(As—A) A (A, + A
B, -3 MR AL
~ Ugn Ugn
ALn+ A Ag(y— Ay

The matrix operator representing scattering from a
layer of thickness ¢, following (15), can be written as

#(1) = C(I + B)exp (iA)(I — B)C'¢(0)  (35)
&(t) = {C exp (iA)C~! + C[B exp(iA1)
— exp(iA)B]C~'}¢(0). (36)

The amplitudes in the slice, ¢, can be transformed
into the reflected and transmitted amplitudes, 7,
using the operator F from (19). The product D=F C
is given by

I -
D=} ( +@Ay 1 (A/x)) 37a)
I-Ay I+@Ay
and the inverse is
D-1=1 (I +(/A) I- (x//\)) , (375)
I-(/A) I+ (x/A)

where y are the wave vectors in free space. The
amplitudes from the slice are now given by

7(¢) ={Dexp (iA)D~' + D[Bexp (iAf)

— exp (iA)B]D ™ }9(0). (38)
If it is assumed that Uy, is zero, then the matrix D is
the unit matrix and the effects of the perturbing
potential, U, are given by the second term in square
brackets, M, whose components are

Ugnlexp (ixxt) — exp (ix,0)]

where Rj is the corresponding amplitude vector for
the bulk alone. The reflection amplitude operator for
the thin layer and bulk is

R= —[exp(—ixt) + My, — R;M,,]"!

X [Rpexp(ix?) + RsMy; — Myy], 42)
which can be expanded to first order in the pertur-
bing matrix M,

R = exp(ix?) Rgexp(ix?)
— exp(ix?) My, exp (ixt) R g exp (ix?)
+ exp(ixt) RgM; — exp(ixt)M,,

+ exp(ixt) RsMia exp(ixt) Rpexp(ix?). (43)
The first term can be identified with transmission
through the thin slice, reflection in the bulk and then
transmission back through the slice. The second term
corresponds to reflection from the bulk followed by
kinematic scattering in the slice, while the third term
corresponds to kinematic scattering in the slice fol-
lowed by reflection from the bulk. The fourth term
corresponds to a single kinematic reflection in the
slice and is smaller than the second and third terms
as a larger reciprocal-lattice vector is involved. The
last term represents a reflection from the bulk fol-
lowed by a kinematic reflection in the slice that is
then reflected by the bulk. As it is of higher order
than the other terms in (43), it is neglected.

Results

In reflection electron diffraction, it is customary to
record data as rocking curves, which show the inten-
sity in a given beam as a function of the angle of

— Ugnlexp (—ixnt) — exp (ix, 1]

XeOln = Xg) Xs(xn + Xg)

M=} swmx) e (39)
— Ugnlexp (—ixnt) —exp(=ix,0)]  Ugnlexp (—ixn?) — exp(—ix,1)]
Xg(Xh+Xg) Xg(Xh_Xg)
Equation (38) simplifies to

. exp(ivt) + M M .0 incidence. A program was written based on (25) for
( " (t)) =( p(ix) " ' N )( 7.0 ) calculating reflected intensities. The potentials were
7-(1) M;, exp(—ixt) + My, | \n-(0) calculated from the X-ray scattering factors of Doyle

(40)

The reflected amplitude at the surface can now be
written as

[Rpexp(ix?) + RsMy; — My ]9..(0)

=[exp(—ixt) + My, — RsM;]n_(0), (41)

& Turner (1968) using the Mott formula, and the
non-Hermitian part was calculated using the pro-
gram given by Bird (Bird & King, 1990). The fun-
damental shape of the rocking curve can be
understood by examining the analytical form of the
reflected intensity from a barrier with a complex
potential as given in the Appendix. In the region
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Table 1. Parameters used in the calculations

Fig. 1 Fig. 2(a) Fig. 2(b) Fig.3 Figs.4&5
Surface Pt(111) Ag(002) MgO(002) Pt(002) GaAs(002)
Azimuth 211 110 010 010 220
Rodsand no. 000 (9) 000(7) 000(7)  000(9) 000(9)
of Fourier +220(5) *200 (5) *200(7) =220 (7)
coefficients +440 (3) =400 (3)
V, V) 30 24 18 30 14.5
Vi (eV) 2.0 3.0 1.0 150 10.0
u? (A 0.0 0.0 0.3 0.19 0.41
Voltage (kV) 20 20 10 20 13

where k, is less than 2meV/#2, there is total reflec-
tion. For high angles of incidence, the reflected inten-
sity varies as given by (47). Making the potential
periodic normal to the surface introduces peaks at
the Bragg angles as shown in Fig. 1 for the Pt(111)
row with nine coefficients of potential. The accelerat-
ing voltage was 20 kV, which would give successive
peaks at 1.2°.

The behaviour is further complicated when three-
dimensional diffraction is introduced. The rocking
curves for the (002) surfaces of silver at 20 kV and
MgO at 10kV are shown in Figs. 2(a) and (b),
respectively. These were all three-rod calculations
where the 000 rod is shown as a solid line, while the
220 rod for silver and the 200 rod for MgO are
shown as dashed lines. The exact conditions are
given in Table 1.

The program was modified using (32) to calculate
the reflected intensity for an overlayer on a substrate.
The effects of various overlayers were explored with
three-rod calculations using parameters given in
Table 1. Owing to the approximate sampling of the
variation in the potential in the z direction, the
results should only be used for a qualitative interpre-
tation of the effects on RHEED intensity. Fig. 3
shows the results for an overlayer on Pt (002) that

Intensity
1.0
0.8 4
0.6

0.4 1

0.2 1

0.0 T T T T T T

Angle (deg)
Fig. 1 Rocking curve for Pt(111) at 20 kV.

was stretched by 10%. The outer-atom positions
were also moved 0.04 A inwards, though this did not
affect the results. The rocking curve is also shown for
a bulk crystal that is stretched in the [001] direction
by 10%. The peaks shift to new positions, as would
be expected from the change in Bragg angle, and
there is not much difference between bulk specimen
and a single overlayer. This indicates that RHEED is
dominated by scattering in single layers. A similar
result is shown in Fig. 4(a) for GaAs(002), where the
surface layer is stetched 10%, the outer Ga atoms are
moved inwards 0.28 A -and the As atoms are moved
0.14 A in the same direction. The rocking curve from
GaAs with an overlayer is compared with that from
the bulk crystal in Fig. 4(a). In Fig. 4(), the GaAs
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Fig. 2. (@) Rocking curve for Ag(002) at 20 kV. Solid curve: 000
rod; dashed curve: 220 rod. (b) Rocking curve for MgO(002) at
10 kV. Solid curve: 000 rod; dashed curve: 200 rod.



PETER REZ 45

rocking curve is compared with the corresponding
rocking curve from a bulk material where the unit
cell is stretched by 10% in the [002] direction but the
relative atom positions are unchanged. The main
effect on the rocking curves comes about from
stretching the layer, which changes the Bragg angles,
though the atom-position-shift changes the relative
heights of peaks between 2.5 and 3°. In another
calculation (Fig. 5), the effects of replacing the top
layer with a layer of AlAs are shown. The rocking
curves are different over the entire angular range and
the high-angle part with the AlAs layer shows inten-
sity oscillations with angle (Fig. 5b). The 220 rod for
the AlAs overlayers follows the same form as the
bulk GaAs but is lower in intensity (Fig. 5¢).
Various calculations were attempted that treated
the difference between an overlayer and the substrate
as a perturbation and used (42), which represents
single scattering, and (43), which is similar and rep-
resents first-order perturbation theory. The results
were disappointing and gave neither the correct mag-
nitude nor the functional form of the rocking curve.
Although it would be convenient if RHEED in some
form could be calculated kinematically, it appears
that even in a single layer strong dynamical multiple-
scattering effects have to be considered, as has been
suggested by Meyer-Ehmsen (1989), Peng (Peng &
Cowley, 1986) and others. The RHEED theory given
above is probably not the best way of doing practical
calculations. Even for calculations with relatively few
rods, the matrix that must be diagonalized in (10)
becomes large enough (> 50 X 50) that serious errors
occur in the diagonalization procedure. The scaling
of diagonalization time as N* also has to be con-
sidered. The optimal method for rocking-curve cal-
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Fig. 3. Rocking curve for Pt(002) 000 rod at 20 kV (solid curve).
Dashed curve: overlayer stretched 10% in [002] direction.
Dotted curve: bulk with lattice stretched 10% in [002] direction.

culations is probably a modified form of that
proposed by Maksym & Beeby (1981) as published
by Meyer-Ehmsen (1989). It would be interesting to
see how some of the perturbation-theory techniques
proposed in this paper relate to the first-order diffuse
scattering theory given by Korte & Meyer-Ehmsen
(1993).

Concluding remarks

A theory of RHEED is developed in terms of matrix
operators where the reflected amplitude is explicitly
derived as the limiting case for a semi-infinite slab.
The theory is generalized for overlayers and the
relationship between kinematic theory and a first-
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Fig. 4. (a) Rocking curve for GaAs(002) 000 rod at 13 kV (solid
curve). Dashed curve: overlayer modified as described in text.

(b) Solid curve as in (a). Dashed curve: bulk with unit cell the
same as the overlayer in (a).



46 A MATRIX-OPERATOR APPROACH TO RHEED THEORY

Intensity

1.00 9~

L NPT NIRRT

0.80 -

0.60

0.40

0.20 -

0.00 T T 1

Angle (deg)
(@)

Intensity
0.15

0104 &

0.05 1

0.00 T

N .
Angle (deg)
®)

Intensity
0.3

0.2 1

0.1

0.0 T

Angle (deg)
(©
Fig. 5. (@) Rocking curve for GaAs(002) 000 rod at 13 kV (solid
curve). Dotted curve: AlAs overlayer. (b) High-angle portion of
(@). (c) Rocking curve for 220 rod. Solid curve: GaAs(002)
surface; dotted curve: AlAs overlayer on GaAs(002).

order perturbation treatment is explored. The kine-
matic theory is shown to be identical to first-order
perturbation theory for a layer when only terms
corresponding to single scattering before or after a
reflection from the bulk are considered. The general
form of the reflected-intensity rocking curve is dis-
cussed in terms of reflection from a potential barrier
and the one-rod case. Calculations are also presented
showing the results for various overlayers. Stretching
the overlayer can cause changes in peak positions
due to changes in effective Bragg angles. Displacing
atoms within the overlayer may give changes in
relative peak intensities. Calculations show that
RHEED is strongly dynamical, even within the sur-
face layer. Owing to the limited number of rods in
these calculations and the approximate sampling of
the potential variation for overlayers, the results of
this method can only be used for a qualitative inter-
pretation of RHEED features. Kinematical or single-
scattering calculations using just the difference
between the overlayer and the bulk fail to give either
the correct magnitude of intensity in the rocking
curve or even the correct functional form. Owing to
numerical diffculties with diagonalizing large
matrices, it is suggested that the method proposed by
Meyer-Ehmsen (1989) and that of Zhao et al. (1988)
are better suited to realistic RHEED calculations.
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91-15680.

APPENDIX

To understand the properties of the specularly
reflected wave, it is useful to examine the reflection
from a region with an arbitrary complex potential.
The Schrodinger equation is

—H22m)V2 + e(V, + iV)y = Ey,  (Al)

which for this one-dimensional problem can be
rewritten as

d*y/dz? = —[(x* + U,) + iUy (42)

The solutions are waves with wave vectors
*+(a + iB), where a and B are given by

@ = [ + U211 + {1+ [UH(3 + U)) 2
(43a)

B =10 + U211 + [V + U2 - D™
(43b)
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If U; is much less than x> + U,, then « and B can be
approximated as

a= 2+ U)"[1 + y(UYU?), (A4a)
B = U203+ U2, (A4b)

The reflected amplitude, R, can be solved by match-
ing the boundary conditions.

R=(x—a—iB)(x+a+ip). (45)

In the limit of small K or for y* < U,, the reflected
amplitude is unity. For large y (corresponding to a
large angle for the specular beam) it can be approxi-
mated as

R=iU,/4y%, (46)

which only depends strongly on the imaginary part
of the potential. The reflected intensity is therefore

I=U¥16x" (A7)
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On the Single-Pixel Approximation in Maximum-Entropy Analysis
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Abstract

By a recent development of the maximum-entropy
method (MEM) following Sakata & Sato [Acta
Cryst. (1990), A46, 263-270], electron- (or nuclear-)
density distributions have been obtained for crystal-
line materials of simple structures from single-crystal
or powder diffraction data. In order to obtain a ME
density map, the ME equation is solved iteratively
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under the zeroth-order single-pixel approximation
(ZSPA) starting from the uniform density. The pur-
pose of this paper is to examine the validity of the
ZSPA by using a one-dimensional two-pixel model
for which the exact solution can be analytically
obtained. For this model, it is also possible to solve
the ME equation numerically without ZSPA by
the same iterative procedure as in the case of ZSPA.
By comparison of these three solutions for a one-
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