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APPENDIX 
Table 3. Cartesian forms for the real spherical harmonic functions with l = 8 (Paturle, 1990) 

These extend the published tabulat ion for l < 7 (Paturle & Coppens,  1988). The arguments  x, y and z are or thonormal  components ,  i.e. 
direction cosines, o f  a unit  vector and  the functions 

Yt.m ---- N,.I,,I C,.tml C,.m (x,y,z) 
are normalized such tha t  

f lyt~.ld/2 = 2 - 8o.t. 
n 

m Csm Cs.lml Ns.lml 

0 6435z s - 12012z 6 + 6930z 4 - 1260z 2 + 35 0.0078125 0.0059609 
1 (715z 7 - 1001z 5 + 385z 3 - 35z)x 0.5625 0.0784858 

- 1 (715z 7 - lO01z 5 + 385z ~ - 35z)y 
2 (143z 6 - 143z 4 + 33z 2 - 1)(x 2 - y:) 19.6875 0.3253786 

- 2 (143z 6 - 143z 4 + 33z 2 - 1)(2xy) 
3 (39z 5 - 26z J + 3z)(x 3 - 3xy 2) 433.125 0.8780415 

- 3 (39z s - 26z 3 + 3z) (3x2y - y3) 
4 (65z 4 _ 26z 2 + 1)(x 4 _ 6x2y2 + y4) 1299.375 0.3411683 

- 4  (65z 4 - 26z 2 + 1)(4x3y - 4x~) 
5 (5z 3 - z)(x 5 - 10x3fl + 5xy 4) 67567.5 2.4892756 

- 5 (Sz 3 - z)(5x4y - 10x2y ~ + y~) 
6 (15z 2 - l)(x 6 - 15x4y 2 + 15x2y 4-  y~) 67567.5 0.3933012 

- 6  (15z: - 1)(6xSy - 20x3y 3 + 6xy 5) 
7 z(x 7 - 21xSy 2 + 35x3y 4 - 7xy 6) 2027025 2.2500000 

-7 z(7x6y - 35x'y 3 + 21x2) p -yT) 
8 x s _ 28x~y2 + 70x4y4 _ 28x2y6 + yS 2027025 0.6152344 

-8 8xTy - 56x~y a + 56x~y 5 - 8xy 7 
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Abstract 

The amplitudes of beams reflected from a crystal 
surface by high-energy electrons are expressed in 
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terms of matrix operators based on Bloch waves. The 
solution is derived in terms of the limiting case of an 
infinite slab and is therefore applicable to cases 
involving overlayers of different composition and 
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structure. The possibility of using a kinematical 
theory and its relationship to the full dynamical 
treatment are investigated. Calculations show that 
the method is limited by numerical problems but that 
it can be used to give a qualitative description of 
features in reflection high-energy electron diffraction. 

Introduction 

Reflection high-energy electron diffraction (RHEED) 
has become more important in recent years owing to 
the use of RHEED oscillations in monitoring the 
epitaxic growth of multilayer films (Neave, Dobson, 
Joyce & Zhang, 1985). There has also been increas- 
ing interest in using RHEED and reflection electron 
microscopy (REM) for the characterization of sur- 
face structure at the atomic level (Yagi, 1987). In 
those cases where RHEED is used to monitor film 
growth, a beam of energy between 10 and 30 kV is 
incident at a glancing angle of a few degrees. 
Generally, reflection electron microscopy is per- 
formed in electron microscopes and higher beam 
energies of 100 kV are used. The angle of incidence 
on the specimen is correspondingly smaller. In many 
respects, the theory of RHEED is similar to the 
theory for transmission electron diffraction or 
microscopy as exchange between the incident elec- 
tron and the crystal electron can be neglected, unlike 
in low-energy electron diffraction (LEED). The 
boundary conditions are very different from the 
transmission electron diffraction case. 

Many experimental surface scientists who use 
RHEED as a surface-characterization tool are quite 
satisfied with an analysis based on kinematic (single- 
scattering) theory (see, for example, Cohen, Petrich, 
Pukite, Whaley & Arrott, 1989). It is well known 
that electrons interact strongly with matter and 
strictly RHEED should be described by a multiple- 
scattering (dynamical) diffraction theory. 

The first such theory of RHEED, based on Bloch 
waves, was published by Bethe (1928). Similar two- 
beam theories were developed by Kohra & 
Shinohara (1948), and Colella (1972) extended these 
ideas to the many-beam problem. An interesting 
diagonalization method based on the Hills determi- 
nant was proposed by Moon (1972). The Bloch-wave 
methods all rely on a three-dimensional Fourier 
analysis of the crystal potential. Peng (Peng & 
Whelan, 1990) has recently shown how to express the 
Bloch-wave theory in terms of matrix operators. He 
then applied the theory for one-rod systematic dif- 
fraction to the calculation of intensity of oscillations 
during epitaxic growth (Peng & Whelan, 1991b,c,d). 
Bloch-wave calculations have also been used to 
explain the phenomenon of surface resonance both 
numerically (Zuo & Liu, 1992) and analytically 
(Dudarev & Whelan, 1994). 

In the last decade, it has become more common, 
following Maksym & Beeby (1981), to do a Fourier 
analysis in a plane parallel to the crystal surface and 
solve the coupled differential equations for propa- 
gation along the direction of the surface normal. 
Ichimiya (1983) has developed a variation of this 
method that uses matrix operators to represent the 
propagation through thin slabs. In these methods, it 
is implicitly assumed that the solution has decayed 
sufficiently so that a simple boundary condition can 
be imposed on the bottom surface of a crystal slab. 
However, there are still numerical problems as the 
exponentially growing solutions increase faster than 
the desired exponentially decaying solutions. Zhao, 
Poon& Tong (1988) have re-expressed the solution 
in terms of a logarithmic derivative that avoids many 
of the numerical problems of the Maksym & Beeby 
(1981) method. They argued that a large number of 
reciprocal-lattice rods were needed in the calculation 
for convergence. This was disputed by both Ichimiya 
(1990), who showed that his method converged with 
11 rods, and Meyer-Ehmsen (1989), who separated 
the oscillatory behaviour from the reflection matrix 
and achieved convergence with seven rods for 
Pt(111). To achieve convergence for a wide range of 
angles in a rocking curve at an arbitrary azimuth, it 
is advisable to follow the prescription of Zhao, Poon 
& Tong (1988). 

Finally, there have been calculations based on the 
transmission-microscopy multislice method (Peng & 
Cowley, 1986), which follows the propagation of the 
beam, as it travels through the crystal surface region. 
In effect, these calculations are applications of the 
standard transmission supercell method for crystal 
defects, where the defect is the crystal-vacuum inter- 
face. This would be called profile imaging in high- 
resolution microscopy of a thin specimen, with the 
beam incident on the surface plane. A disadvantage 
of these methods is that there are always questions 
on the magnitude of errors propagated and whether 
the solution has reached a steady state. The com- 
puter time is prohibitive for calculating rocking 
curves but the methods are very useful for calcu- 
lating defect images in which there is no periodicity 
in the crystal surface plane. 

If RHEED is to be applied routinely in determin- 
ing surface structures, a simple quasikinematic inter- 
pretation of rocking-curve intensity distributions 
would be most useful. There has been much recent 
work on the GaAs(100) (2 x 4) reconstructed surface 
(Ma, Lordi, Larsen & Eades, 1993) and Knibb 
(1991) has made comparisons between dynamical 
and kinematic theories. Peng & Whelan (1991a) have 
suggested that it should be possible to treat the 
surface supedattice reflections kinematically. Korte 
& Meyer-Ehmsen (1993) have extended the calcula- 
tion scheme used by Meyer-Ehmsen (1989) and con-  
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sider first-order diffuse scattering while retaining 
dynamical coupling between rods. 

I t  is also necessary to have some method for 
exploring perturbations of atom positions, Debye- 
Waller factors or inelastic potentials in any attempt 
to solve the inverse problem. Both Peng (Peng & 
Whelan, 1992) and Stock & Meyer-Ehmsen (1990) 
have used nonlinear search procedures to determine 
best-fit parameters to describe the results of RHEED 
experiments. Peng & Dudarev (1993) have used a 
perturbation approach to calculate the changes of 
the specular beam intensity in a one-rod calculation 
for the Ni(001) p (2 x 2) surface when the top atom is 
displaced by up to 0.2 ,/k. 

In this paper, a matrix form of RHEED theory is 
developed, similar to the coupled plane-wave equa- 
tions of high-energy electron diffraction (Hirsch, 
Howie, Whelan, Nicholson & Pashley, 1965). The 
reflected-wave amplitudes are derived by applying 
the boundary conditions to a slab of thickness t and 
then allowing the thickness to tend to infinity. In this 
way, the exponentially growing solutions are for- 
mally eliminated. The various features of rocking 
curves are discussed and explained using simple 
quantum-mechanical models. Finally, the effect of 
perturbations are examined and the formal connec- 
tion to a kinematic theory demonstrated. The appli- 
cability of various perturbations is also considered. 

T h e o r y  

The behaviour of electrons at RHEED energies is 
governed by the Schrrdinger equation 

~m ~ - - ~  + --d--j t dz 2 ] + e VO = E~b (1) 

E = (/i2/2m)(x 2 + Xy 2 + X2), (2) 

where Xx, Xy and Xz are the components of the 
incident electron wave vector in free space. The x 
and y axes are in the surface plane and the z axis is 
along the surface normal directed into the crystal. 
Inside the crystal, the wave function is expanded as a 
three-dimensional Fourier series in terms of the 
reciprocal-lattice vectors, 

@(r) = Y~ ~g(z) exp [i(kx + g~)x 
g 

+ i(ky + gy)y + i(kz + gz)z], (3) 

where kx, ky and kz are the components of the wave 
vector in the crystal. Similarly, the potential is also 
expanded as a Fourier series: 

U(r) = (2me/t72) V(r) = ~ Ug exp (ig " r). (4) 
g 

The continuity of the wave function and its deriva- 
tive require that the x and y components of the 

electron wave vector match at the surface. This is 
true for all reciprocal-lattice rods labelled gx, gy: 

kx= Xx kx + gx= Xx + gx 
(5) 

k y = x y  k y + g y = X r + g r  

It is customary to include the mean inner potential in 
the definition of the z component of the wave vector: 

= X: 2 + Uoo. (6) 

The Schrrdinger equation becomes 

d2~og 
+ 2i(kz + g z ) ~ - ~ -  [~  + ~ + ~ - (kz + gz) 2 

d~ 
- (kx + g~,)2 _ (Icy + gy)2]g,g + )-, Ug-h~'h 

h 

= 0, (7) 

which can be expressed more compactly in matrix 
form as 

(8) 
- Q  - B  

where 

Q gg = k 2 - (k  + g)2 

Qgh = Ug-h g # h 

Bgg = 2i(kz + gz) 

B g h = 0  g #  h. 

If a transformation is made such that z ' =  iz, the 
coupling matrix is purely real: 

0 

The solutions to the coupled differential equations 
can be found by diagonalizing the coupling matrix L 
in terms of the eigenvectors C and the eigenvalues k. 

(oi) 
L = (10) 

- Q  B 

L C  = C~  

(p(t) '~=Ctexp(At)]DC-'((p(O) ~ (ll) 
d~(t)/dz } \ d (p(O)/dz 1" 

The coupling matrix, L, has dimensions 2N x 2N, 
where N is the number of Fourier coefficients in the 
expansion of the potential. The wavelength and its 
derivative at a depth t are now expressed in terms of 
the wavefunction and derivative at the entrance 
surface. 

For the relevant boundary conditions to be 
applied, the solution must be reformulated in terms 
of the beams propagating in the vacuum outside the 
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crystal with wave vector 

X x + gx, Xy + gy, + Ix  2 - (Xx + gx) 2 -  (Xy + gy)2]l/2, 
(12) 

corresponding to each of the n reciprocal-lattice 
rods, The first point to note is that there are only 2n 
nondegenerate eigenvalues in the first Brillouin zone. 
These can be selected using a 2N x 2n matrix S of 
the form 

S 
0 

0 

It is also necessary to 

0 0 0 

0 0 0 

1 0 0 
1 0 
0 0 °°. 

(13) 

sum the amplitudes in the z 
direction along the foil normal. This can be achieved 
with a 2n x 2N matrix P of the form 

The forward- and backward-propagating wave 
amplitudes can be expressed in terms of the Fourier- 
coefficient amplitudes by inverting (17): 

(~_+) = F (d./~dz), (18) 

where F is defined by 

r = ½ I / iXz]"  (19) 

Equation (15) becomes 

( .+( t )~ 
T_(t)  ] = F P C S  [exp (At)]z)SrC-  i p r F  - '  

x [ 7/+ (0) ~ (20) 

To simplify (20), the matrix product F P C S  is 

I 
1 exp(igzzZ) exp(ig3zZ) 

0 0 0 p= 
0 0 0 

0 0 0 0 " " /  

1 exp(ig2~z) 0 0 . (14) 

0 0 1 exp(ig2~z) 
: • .. : 

The equation relating the wavefunction summed over 
the coefficients in a rod, ~, and its derivative at 
depth, t, to that at the specimen surface can now be 
rewritten as 

@(t) ) 
d ~ ( t ) / d z  = P C S [exp (A t ) ]oSrC - ' P r  

\ d ~(0)/dz ]" 
(15) 

The amplitudes of the beams in free space are den- 
oted T± and can be divided into forward and back- 
ward propagating parts according to the sign of the z 
component of the wave vector a' = --- [X 2 - 0¢x + gx)2 
-(Xy + gy)2]l/a. Matching wavefunctions at the exit 
surface of the crystal gives 

tP(z) = T+ exp(iXzZ) + T -  exp(-  iXzZ) 

dtP(z)/dz = iXzT+ exp(ixzz) - i,,~ 1'1- exp(-  iXzZ), 

(16) 

which can be expressed more conveniently in matrix 
form: 

I I 
(dg}/~dz) = (iXzI -iXzI) (~+)"  

(17) 

denoted A and its inverse V. The eigenvalues can be 
separated into a set with positive real parts denoted A 
and a corresponding set with negative real parts 
denoted -A. The forward- and backward-propa- 
gating waves can now be written as 

(T+(t)~ =/All  AI2 / 
T - ( t ) ]  \A21  A22] ( e x 7  t) 

o) 
exp(-At) 

{ VII V12/(T+(0) ) (21) 
×  v2, v = ]  ,1-(0) • 

Following the procedure used by Fathers & Rez 
(1979, 1984) in the solution of the electron-transport 
equation in semi-infinite specimens, the solution for 
the reflected wave at the surface, T-(0), can be 
expressed in terms of the incident wave, T+(0). As 
the thickness tends to infinity, the backward- 
propagating wave T_(t) tends to zero. The reflected 
wave is given by 

T_(0) = - [Az, exp(A0 V,: 

+ A22exp(-M)V22]- 1 [A2,exp(At) Vii 

+ A22exp(-At) V2,]T+ (0). (22) 
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Extraction of a factor A2] exp(Att)V12 from the matrix 
operator that is being inverted leads to 

t/_ (0)= - [ I  + Vi~'exp(-M)X~i 1 A= 

x exp( -a / )  V22]- 'Vi)' exp ( -  at ) Aft' 

X [A2, exp(~t) Vl, 

+ A22exp(-At) V~a]~+ (0). (23) 

As t tends to 

which can be 

infinity, we are left with 

~/_(0) = - V ~ ' V , ,  ~+(0), (24) 

rewritten as 

7/_(0) = A29A~ 1 ~'/+(0) (25) 

by making use of the fact that V is the inverse of A. 
This result is identical to that which would have 

been obtained by excluding Bloch waves that corre- 
spond to exponentially growing solutions. In terms 
of Bloch-wave coefficients a j, the wave function in 
the crystal can be written as 

~b(r) = Z Z oqCJg exp [i(yj + kz + gz)Z] 
gx,gy g, d 

x exp [i(kx + g~)x + (ky + gy)y], (26) 

where yj are the eigenvalues of the matrix L. In terms 
of the amplitudes for the rods designated by gx,y, the 
wave function outside the crystal is 

~7~(O)exp(ixg. z) + rl~,(O)exp(-iXgx Z). (27) 

Application of the boundary condition leads to 

Z ajC~ = r/L~(0 ) + r/~.~(0) (28a) 
g,,d 

Y'. ajCJg('yj + kz + gz) = Xgx.,~Tg+~(O) - Xgx~rl~x~(O). 

g='/ (28b) 

The reflected amplitudes can be solved as 

r /~(0)  = I S '  C ~ -  Y'. C~[(y s + kz + gz)lXgx~]} 
I, gz,J gz,J 

gz,J gz,J 

} -  ~r/gx~(0). (29) x [(yj + kz + gz)/Xgx,] + 

The term in the first bracket can be identified with 
A2z and the second term with A]2-1 

Overlayers 

The reflected amplitudes for a system with a layer of 
thickness t on a semi-infinite bulk slab can be for- 

mally derived from (20) and (21). Equation (25) or 
(29) describes the scattering from the semi-infinite 
bulk medium. For convenience, this is rewritten as 

• l_(t)=RsTl+(t), (30) 

where Rs is the reflection matrix of the bulk. Equa- 
tion (20) or (21) applies for scattering by the thin 
overlayer. Equation (21) is expressed as 

(~/+(t)~ = (Tll(t) T12(t)~ (~/+(0)) (31) 

rl-(t)] \T21(t) T22(l) ] l q_ (0 )  ' 

where the matrices Tg(t) can be calculated from Av, 
Vg and exp(At). The expression for the reflected 
amplitudes from the layer and bulk slab is 

7/_(0) = [T2~(t) + T22(t)Rs] 

x [Tl,(t) + T,2(t)Rs]- 1~/+(0). (32) 

Again, in accord with Fathers & Rez (1979, 1984), 
the Tu(t ) matrices could all be calculated using 
decaying exponentials, though this should not be 
necessary for RHEED problems involving layers 
with a thickness of only a few atomic planes. For a 
thin layer, the Fourier-series expansion of (3) and (4) 
should be replaced by a Fourier transform by 
making g~ a continus variable. Using the Fourier- 
series representation is equivalent to doing a Fourier 
integral by summing over the values of the potential 
sampled at discrete reciprocal-lattice vectors. 
Approximating an atom as a Gaussian of half-width 
0.5A gives a maximum fractional error in the 
potential of 20%. The error would be most serious at 
glancing angles where the details of the potential 
have the greatest effect. 

Perturbation theory 

To examine the relationship between the full dy- 
namical theory and a kinematic theory, it is useful to 
develop a perturbation theory for the reflected-beam 
amplitudes. It is convenient to assume that there is 
only one Fourier coefficient of potential for each 
rod, and that those Fourier coefficients of potential 
Ug-h representing coupling between rods can be 
considered small compared with Uoo. The matrix Q 
in (8) is now diagonal and for each rod a 
Schrrdinger equation such as (A1) in the Appendix 
applies, with complex wave vector A given by a + 
ifl. The off-diagonal parts of the original matrix M, 
given in (8), can be considered as a perturbing 
matrix, U. 

The eigenvector matrix for the unperturbed case is (i i / 
C = . (33) 

iA - iA 

Standard perturbation theory gives the perturbed 
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eigenvector matrix as C(I  + B), 

Bgh -- ½ 

Ugh -- Ugh 

(34) 

The matrix operator representing scattering from a 
layer of thickness t, following (15), can be written as 

~b(t) = C(I  + B) exp (iM)(I - B)C-'~b(0) (35) 

~b(t) = {C exp ( /M)C- '  + C[B exp(iM) 

- exp (/M)B] C-'}~b(0). (36) 

The amplitudes in the slice, ~b, can be transformed 
into the reflected and transmitted amplitudes, 7t, 
using the operator F from (19). The product D = F C 
is given by 

and the inverse is 

D - '  = ½ ( i  + Or/a) I - o r / a ) /  (37b) 
- 0r/a) I + Or/a)]' 

where X are the wave vectors in free space. The 
amplitudes from the slice are now given by 

• /(t) = {D exp (iM)D -1 + D[B exp (iM) 

where RB is the corresponding amplitude vector for 
the bulk alone. The reflection amplitude operator for 
the thin layer and bulk is 

R = - [ exp( -  i,l,t) + M : 2 -  RBM12] -1 

x [Rsexp(ixt) + RsM, I - M2,], (42) 

which can be expanded to first order in the pertur- 
bing matrix M, 

R = exp(ixt) Rs exp(igt) 

- exp( ix t )Mz2 exp (igt)Rs exp (igt) 

+ exp(igt)RsM,1 - exp(igt)M:, 

+ e x p ( i x t ) R s M l : e x p ( i g t ) R s e x p ( i g t ) .  (43) 

The first term can be identified with transmission 
through the thin slice, reflection in the bulk and then 
transmission back through the slice• The second term 
corresponds to reflection from the bulk followed by 
kinematic scattering in the slice, while the third term 
corresponds to kinematic scattering in the slice fol- 
lowed by reflection from the bulk. The fourth term 
corresponds to a single kinematic reflection in the 
slice and is smaller than the second and third terms 
as a larger reciprocal-lattice vector is involved. The 
last term represents a reflection from the bulk fol- 
lowed by a kinematic reflection in the slice that is 
then reflected by the bulk. As it is of higher order 
than the other terms in (43), it is neglected. 

- exp (iM)B]D-'}~(0). (38) 

If it is assumed that U00 is zero, then the matrix D is 
the unit matrix and the effects of the perturbing 
potential, U, are given by the second term in square 
brackets, M, whose components are 

M=½ 

Ugh[exp (ixht) -- exp (iXgt)] 

Xg(Xh- Xg) 
- Ugh [exp (-- ixht) -- exp ( -  iXgt)] 

xg(xh + xg) 

Equation (38) simplifies to 

( ~ + ( t ) l = ( e x p ( i x t ) + M l l  M,2 ) ('g+(O)l 
TI_(t) ] ~ M21 exp(- ixt) + M22 ~ 7/_(0) ]" 

(40) 

The reflected amplitude at the surface can now be 
written as 

[Rs exp(ixt) + RBMI1- M21]~+(0) 

= [exp( -  ixt) + M22 - RsMl2]~q_(0), (41) 

Resdts 

In reflection electron diffraction, it is customary to 
record data as rocking curves, which show the inten- 
sity in a given beam as a function of the angle of 

- Ugh[exp (-- ixht)  -- exp (iXgt)] \ 

Xg (Xh + Xg )  

Ugh [exp ( -  i Xh t) -- exp (-- i X g t ) ]  

Xg (Xh -- Xg) 

(39) 

incidence. A program was written based on (25) for 
calculating reflected intensities. The potentials were 
calculated from the X-ray scattering factors of Doyle 
& Turner (1968) using the Mott formula, and the 
non-Hermitian part was calculated using the pro- 
gram given by Bird (Bird & King, 1990). The fun- 
damental shape of the rocking curve can be 
understood by examining the analytical form of the 
reflected intensity from a barrier with a complex 
potential as given in the Appendix. In the region 
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Table 1. Parameters used in the calculations 

Surface 
Azimuth 
Rods and no. 

of Fourier 
coefficients 

v0 (eV) 
v' (eX9 
u' (h ~) 
Voltage (kV) 

Fig. 1 Fig. 2(a) Fig. 2(b) Fig. 3 Figs. 4 & 5 

Pt_(_l 11) Ag(002) MgO(002) Pt(002) _GaAs(002) 
21 1 110 010 010 220 
000 (9) 000_(7) 000 (7) 000 (9) 000 (9) 

+_220(5) -+200(5) +-200(7) _+220(7) 
_ 440 (3) - 400 (3) 

30 24 18 30 14.5 
2.0 3.0 1.0 15.0 10.0 
0.0 0.0 0.3 0.19 0.41 
20 20 10 20 13 

where k= is less than 2meV/l~ 2, there is total reflec- 
tion. For high angles of incidence, the reflected inten- 
sity varies as given by (A7). Making the potential 
periodic normal to the surface introduces peaks at 
the Bragg angles as shown in Fig. 1 for the P t ( l l l )  
row with nine coefficients of potential. The accelerat- 
ing voltage was 20 kV, which would give successive 
peaks at 1.2 ° . 

The behaviour is further complicated when three- 
dimensional diffraction is introduced. The rocking 
curves for the (002) surfaces of silver at 20 kV and 
MgO at 10 kV are shown in Figs. 2(a) and (b), 
respectively. These were all three-rod calculations 
where the 000 rod is shown as a solid line, while the 
220 rod for silver and the 200 rod for MgO are 
shown as dashed lines. The exact conditions are 
given in Table 1. 

The program was modified using (32) to calculate 
the reflected intensity for an overlayer on a substrate. 
The effects of various overlayers were explored with 
three-rod calculations using parameters given in 
Table 1. Owing to the approximate sampling of the 
variation in the potential in the z direction, the 
results should only be used for a qualitative interpre- 
tation of the effects on RHEED intensity. Fig. 3 
shows the results for an overlayer on Pt (002) that 

was stretched by 10%. The outer-atom positions 
were also moved 0.04 A inwards, though this did not 
affect the results. The rocking curve is also shown for 
a bulk crystal that is stretched in the [001] direction 
by 10%. The peaks shift to new positions, as would 
be expected from the change in Bragg angle, and 
there is not much difference between bulk specimen 
and a single overlayer. This indicates that RHEED is 
dominated by scattering in single layers. A similar 
result is shown in Fig. 4(a) for GaAs(002), where the 
surface layer is stetched 10%, the outer Ga atoms are 
moved inwards 0.28 A-and the As atoms are moved 
0.14 A in the same direction. The rocking curve from 
GaAs with an overlayer is compared with that from 
the bulk crystal in Fig. 4(a). In Fig. 4(b), the GaAs 
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0.8" 

0.6- 
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0 1 2 3 4 5 6 

Angle (deg) 
Fig. 1 Rocking curve for P t ( l l l )  at 20 kV. 
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0.6 " 
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0;0 
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I ! 

0 1 2 6 
! ! ! 

3 4 5 

Angle (deg) 
(b) 

Fig. 2. (a) Rocking curve for Ag(002) at 20 kV. SoUd curve: 000 
rod; dashed curve: 2~0 rod. (b) Rocking curve for MgO(002) at 
10 kV. Solid curve: 000 rod; dashed curve: 200 rod. 



PETER REZ 45 

rocking curve is compared with the corresponding 
rocking curve from a bulk material where the unit 
cell is stretched by 10% in the [002] direction but the 
relative atom positions are unchanged. The main 
effect on the rocking curves comes about from 
stretching the layer, which changes the Bragg angles, 
though the atom-position-shift changes the relative 
heights of peaks between 2.5 and 3 ° . In another 
calculation (Fig. 5), the effects of replacing the top 
layer with a layer of AlAs are shown. The rocking 
curves are different over the entire angular range and 
the high-angle part with the AlAs layer shows inten- 
sity oscillations with angle (Fig. 5b). The 220 rod for 
the AlAs overlayers follows the same form as the 
bulk GaAs but is lower in intensity (Fig. 5c). 

Various calculations were attempted that treated 
the difference between an overlayer and the substrate 
as a perturbation and used (42), which represents 
single scattering, and (43), which is similar and rep- 
resents first-order perturbation theory. The results 
were disappointing and gave neither the correct mag- 
nitude nor the functional form of the rocking curve. 
Although it would be convenient if RHEED in some 
form could be calculated kinematically, it appears 
that even in a single layer strong dynamical multiple- 
scattering effects have to be considered, as has been 
suggested by Meyer-Ehmsen (1989), Peng (Peng & 
Cowley, 1986) and others. The RHEED theory given 
above is probably not the best way of doing practical 
calculations. Even for calculations with relatively few 
rods, the matrix that must be diagonalized in (10) 
becomes large enough (> 50 x 50) that serious errors 
occur in the diagonalization procedure. The scaling 
of diagonalization time as  N 3 also has to be con- 
sidered. The optimal method for rocking-curve cal- 

Intensity 

0.20 

0.10 

0.00 ! I I 

2 3 4 5 6 

Angle (deg) 
Fig. 3. Rocking curve for Pt(002) 000 rod at 20 kV (solid curve). 

Dashed curve: overlayer stretched 10% in [002] direction. 
Dotted curve: bulk with lattice stretched 10% in [002] direction. 

culations is probably a modified form of that 
proposed by Maksym & Beeby (1981) as published 
by Meyer-Ehmsen (1989). It would be interesting to 
see how some of the perturbation-theory techniques 
proposed in this paper relate to the first-order diffuse 
scattering theory given by Korte & Meyer-Ehmsen 
(1993). 

Concluding remarks 

A theory of RHEED is developed in terms of matrix 
operators where the reflected amplitude is explicitly 
derived as the limiting case for a semi-infinite slab. 
The theory is generalized for overlayers and the 
relationship between kinematic theory and a first- 

Intensity 
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0.60- .., 

0.40 - ~ i . . . ~  
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0.00 I I I ! 

0 1 2 3 4 5 

Angle (deg) 
(b) 

Fig. 4. (a) Rocking curve for GaAs(002) 000 rod at 13 kV (solid 
curve). Dashed curve: overlayer modified as described in text. 
(b) Solid curve as in (a). Dashed curve: bulk with unit cell the 
same as the overlayer in (a). 
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order perturbation treatment is explored. The kine- 
matic theory is shown to be identical to first-order 
perturbation theory for a layer when only terms 
corresponding to single scattering before or after a 
reflection from the bulk are considered. The general 
form of the reflected-intensity rocking curve is dis- 
cussed in terms of reflection from a potential barrier 
and the one-rod case. Calculations are also presented 
showing the results for various overlayers. Stretching 
the overlayer can cause changes in peak positions 
due to changes in effective Bragg angles. Displacing 
atoms within the overlayer may give changes in 
relative peak intensities. Calculations show that 
RHEED is strongly dynamical, even within the sur- 
face layer. Owing to the limited number of rods in 
these calculations and the approximate sampling of 
the potential variation for overlayers, the results of 
this method can only be used for a qualitative inter- 
pretation of RHEED features. Kinematical or single- 
scattering calculations using just the difference 
between the overlayer and the bulk fail to give either 
the correct magnitude of intensity in the rocking 
curve or even the correct functional form. Owing to 
numerical diffculties with diagonalizing large 
matrices, it is suggested that the method proposed by 
Meyer-Ehmsen (1989) and that of Zhao et al. (1988) 
are better suited to realistic RHEED calculations. 
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Fig. 5. (a) Rocking curve for GaAs(002) 000 rod at 13 kV (solid 
curve). Dotted curve: AlAs overlayer. (b) High-angle portion of 
(a). (c) Rocking curve for 220 rod. Solid curve: GaAs(002) 
surface; dotted curve: AlAs overlayer on GaAs(002). 

APPENDIX 

To understand the properties of the specularly 
reflected wave, it is useful to examine the reflection 
from a region with an arbitrary complex potential. 
The Schr6dinger equation is 

- (~2/2m) V20 + e(Vr + iV,)~b= EO, (A1) 

which for this one-dimensional problem can be 
rewritten as 

d2¢/dz ~ = - [ ( X  2 + Ur) + iUi]O. (A2) 

The solutions are waves with wave vectors 
__ (a __ i/3), where a and/3 are given by 

a = [(X 2 + U,)/2]m(1 + {1 + [U2i/(X 2 + Wr)]}l/2) 1/2 
(A3a) 

= [0(  2 + Vr)12]l/2({1 + [U~//(X 2 + Ur)]} 1 /2-  1) m. 
(A3b) 
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If Ui is much less than X 2 -t" fr, then a and fl can be 
approximated as 

1 2 2 a = (X 2 + U,)l/2[1 + ~(Ui/U~)] ,  (A4a) 

fl = U/2(X 2 + W,) ~/2. (A4b) 

The reflected amplitude, R, can be solved by match- 
ing the boundary conditions. 

g = Oc - a - i 3 ) /Oc  + a + i3 ) .  (as) 
In the limit of small K or for X 2 < U,, the reflected 
amplitude is unity. For large X (corresponding to a 
large angle for the specular beam) it can be approxi- 
mated as 

R =  iU/4x  z, (A6) 

which only depends strongly on the imaginary part 
of the potential. The reflected intensity is therefore 

I =  u ~ / 1 6 x  4. (AT) 
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Abstract 

By a recent development of the maximum-entropy 
method (MEM) following Sakata & Sato [Acta 
Cryst. (1990), A46, 263-270], electron- (or nuclear-) 
density distributions have been obtained for crystal- 
line materials of simple structures from single-crystal 
or powder diffraction data. In order to obtain a ME 
density map, the ME equation is solved iteratively 
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under the zeroth-order single-pixel approximation 
(ZSPA) starting from the uniform density. The pur- 
pose of this paper is to examine the validity of the 
ZSPA by using a one-dimensional two-pixel model 
for which the exact solution can be analytically 
obtained. For this model, it is also possible to solve 
the ME equation numerically without ZSPA by 
the same iterative procedure as in the case of ZSPA. 
By comparison of these three solutions for a one- 
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